20 research outputs found

    Periodic solutions for a porous medium equation

    Get PDF
    In this paper, we study with a periodic porous medium equation with nonlinear convection terms and weakly nonlinear sources under Dirichlet boundary conditions. Based on the theory of Leray-Shauder fixed point theorem, we establish the existence of periodic solutions

    Re-initialization-free Level Set Method via Molecular Beam Epitaxy Equation Regularization for Image Segmentation

    Full text link
    Variational level set method has become a powerful tool in image segmentation due to its ability to handle complex topological changes and maintain continuity and smoothness in the process of evolution. However its evolution process can be unstable, which results in over flatted or over sharpened contours and segmentation failure. To improve the accuracy and stability of evolution, we propose a high-order level set variational segmentation method integrated with molecular beam epitaxy (MBE) equation regularization. This method uses the crystal growth in the MBE process to limit the evolution of the level set function, and thus can avoid the re-initialization in the evolution process and regulate the smoothness of the segmented curve. It also works for noisy images with intensity inhomogeneity, which is a challenge in image segmentation. To solve the variational model, we derive the gradient flow and design scalar auxiliary variable (SAV) scheme coupled with fast Fourier transform (FFT), which can significantly improve the computational efficiency compared with the traditional semi-implicit and semi-explicit scheme. Numerical experiments show that the proposed method can generate smooth segmentation curves, retain fine segmentation targets and obtain robust segmentation results of small objects. Compared to existing level set methods, this model is state-of-the-art in both accuracy and efficiency

    Periodic boundary value problems for two classes of nonlinear fractional differential equations

    No full text
    Abstract By using the coincidence degree theorem, we obtain a new result on the existence of solutions for a class of fractional differential equations with periodic boundary value conditions, where a certain nonlinear growth condition of the nonlinearity needs to be satisfied. Furthermore, we study another class of differential equations of fractional order with periodic boundary conditions at resonance. A new result on the existence of positive solutions is presented by use of a Leggett–Williams norm-type theorem for coincidences. Two examples are given to illustrate the main result at the end of this paper

    Existence of periodic solutions of a p

    Get PDF

    Asymptotic Behavior of Solutions of a Periodic Diffusion Equation

    No full text
    <p/> <p>We consider a degenerate parabolic equation with logistic periodic sources. First, we establish the existence of nontrivial nonnegative periodic solutions by monotonicity method. Then by using Moser iterative technique and the method of contradiction, we establish the boundedness estimate of nonnegative periodic solutions, by which we show that the attraction of nontrivial nonnegative periodic solutions, that is, all non-trivial nonnegative solutions of the initial boundary value problem, will lie between a minimal and a maximal nonnegative nontrivial periodic solutions, as time tends to infinity.</p

    A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    Get PDF
    We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system
    corecore